Section 7.6:

Laplace Transforms of Discontinuous Functions

Discussion

- Why?
- We want to be able to solve DEs of the form y'' 3y' + 2y = g(t) where g(t) has jump discontinuities
- E.g. Electric Circuits with a switch

Unit Step Function

Definition 5. The unit step function u(t) is defined by (1) $u(t) \coloneqq \begin{cases} 0, & t < 0, \\ 1, & 0 < t. \end{cases}$

(Any Riemann integral, like the Laplace transform, of a function is unaffected if the integrand's value at a single point is changed by a finite amount. Therefore, we do not specify a value for u(t) at t = 0.)

Discussion

- Plug in numbers
- Graph

- Discussion (Piecewise formulas and graphs)
- Shifting the unit step function
- Multiplying the unit step function by a number
- Multiplying the unit step function by a function

Rectangular Window Function

Definition 6. The rectangular window function $\Pi_{a,b}(t)$ is defined by[†]

(3)
$$\Pi_{a,b}(t) \coloneqq u(t-a) - u(t-b) = \begin{cases} 0, & t < a, \\ 1, & a < t < b, \\ 0, & b < t. \end{cases}$$

Discussion

- Plug in numbers
- Graph
- Why is formula correct?

Discussion (Piecewise formulas and graphs)

- Multiplying the rectangular window function by a number
- Multiplying the rectangular window function by a function

Any piecewise continuous function can be expressed in terms of window and step functions.

Example 1 Write the function
$$f(t) = \begin{cases} 3, & t < 2, \\ 1, & 2 < t < 5, \\ t, & 5 < t < 8, \\ t^2/10, & 8 < t \end{cases}$$

in terms of window and step functions.

Note:

Once we know the Laplace Transform of all shifted unit step functions u(t - a), we can find the Laplace Transform of all functions with jump discontinuities

<u>Question</u>: What is $\mathcal{L}{u(t-a)}$? Derive

<u>Question</u>: What is $\mathcal{L}\{\Pi_{a,b}(t)\}$? Derive

The translation property of F(s) discussed in Section 7.3 described the effect on the Laplace transform of multiplying a function by e^{at} . The next theorem illustrates an analogous effect of multiplying the Laplace transform of a function by e^{-as} .

Translation in t

Theorem 8. Let $F(s) = \mathcal{L}{f}(s)$ exist for $s > \alpha \ge 0$. If *a* is a positive constant, then

(8) $\mathscr{L}{f(t-a)u(t-a)}(s) = e^{-as}F(s)$,

and, conversely, an inverse Laplace transform[†] of $e^{-as}F(s)$ is given by

(9)
$$\mathscr{L}^{-1}\left\{e^{-as}F(s)\right\}(t) = f(t-a)u(t-a).$$

Meaning

Translation in t

Theorem 8. Let $F(s) = \mathcal{L}{f}(s)$ exist for $s > \alpha \ge 0$. If a is a positive constant, then

```
(8) \mathscr{L}{f(t-a)u(t-a)}(s) = e^{-as}F(s),
```

and, conversely, an inverse Laplace transform[†] of $e^{-as}F(s)$ is given by

```
(9) \mathscr{L}^{-1}\{e^{-as}F(s)\}(t) = f(t-a)u(t-a).
```

Proof:

In practice it is more common to be faced with the problem of computing the transform of a function expressed as g(t)u(t-a) rather than f(t-a)u(t-a). To compute $\mathscr{L}\{g(t)u(t-a)\}$, we simply identify g(t) with f(t-a) so that f(t) = g(t+a).

 $\mathscr{L}\lbrace g(t)u(t-a)\rbrace(s) = e^{-as}\mathscr{L}\lbrace g(t+a)\rbrace(s)$

Example 2 Determine the Laplace transform of $t^2u(t-1)$

 $\mathscr{L}\{g(t)u(t-a)\}(s) = e^{-as}\mathscr{L}\{g(t+a)\}(s)$

TABLE 7.1 Brief Table of Laplace Transforms		
f(t)	$F(s) = \mathscr{L}{f}(s)$	
1	$\frac{1}{s}$, $s > 0$	
e ^{at}	$\frac{1}{s-a}$, $s > a$	
t^n , $n = 1, 2, \ldots$	$\frac{n!}{s^{n+1}}, \qquad s>0$	
sin bt	$\frac{b}{s^2+b^2}, \qquad s>0$	
cos bt	$\frac{s}{s^2+b^2}, \qquad s>0$	
$e^{at}t^n$, $n=1,2,\ldots$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$	
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	

Section 7.6: Laplace Transforms of Discontinuous Functions **Example 3** Determine $\mathscr{L}\{(\cos t)u(t-\pi)\}$

 $\mathscr{L}\{g(t)u(t-a)\}(s) = e^{-as}\mathscr{L}\{g(t+a)\}(s)$

TABLE 7.1 Brief Table of Laplace Transforms		
f(t)	$F(s) = \mathscr{L}{f}(s)$	
1	$\frac{1}{s}$, $s > 0$	
e ^{at}	$\frac{1}{s-a}$, $s > a$	
t^n , $n=1,2,\ldots$	$\frac{n!}{s^{n+1}}, \qquad s > 0$	
sin <i>bt</i>	$\frac{b}{s^2+b^2}, \qquad s>0$	
cos bt	$\frac{s}{s^2+b^2}, \qquad s>0$	
$e^{at}t^n$, $n = 1, 2, \ldots$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$	
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	

Example 4 Determine $\mathscr{L}^{-1}\left\{\frac{e^{-2s}}{s^2}\right\}$ and sketch its graph.

$$\mathscr{L}^{-1}\left\{e^{-as}F(s)\right\}(t) = f(t-a)u(t-a)$$

TABLE 7.1 Brief Table of Laplace Transforms	
f(t)	$F(s) = \mathscr{L}{f}(s)$
1	$\frac{1}{s}$, $s > 0$
e ^{at}	$\frac{1}{s-a}$, $s > a$
t^n , $n=1,2,\ldots$	$\frac{n!}{s^{n+1}}, \qquad s > 0$
sin bt	$\frac{b}{s^2+b^2}, \qquad s>0$
cos bt	$\frac{s^2 + b^2}{s^2 + b^2}, \qquad s > 0$
$e^{at}t^n$, $n=1,2,\ldots$	$\frac{n!}{(s-a)^{n+1}}, \qquad s>a$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$

Example 5 The current *I* in an *LC* series circuit is governed by the initial value problem

(12) $I''(t) + 4I(t) = g(t); \quad I(0) = 0, \quad I'(0) = 0,$

where

$$g(t) \coloneqq \begin{cases} 1, & 0 < t < 1, \\ -1, & 1 < t < 2, \\ 0, & 2 < t. \end{cases}$$

Determine the current as a function of time t.

 $\mathcal{L}\left\{g(t)u(t-a)\right\}(s) = e^{-as}\mathcal{L}\left\{g(t+a)\right\}(s)$ $\mathcal{L}^{-1}\left\{e^{-as}F(s)\right\}(t) = f(t-a)u(t-a)$

TABLE 7.1 Brief Table of Laplace Transforms		
f(t)	$F(s) = \mathscr{L}{f}(s)$	
1	$\frac{1}{s}$, $s > 0$	
e ^{at}	$\frac{1}{s-a}$, $s > a$	
$t^n, n = 1, 2, \dots$	$\frac{n!}{s^{n+1}}, \qquad s > 0$	
sin <i>bt</i>	$\frac{b}{s^2+b^2}, \qquad s>0$	
cos bt	$\frac{s}{s^2+b^2}, \qquad s>0$	
$e^{at}t^n$, $n=1,2,\ldots$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$	
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	

Example 5 The current *I* in an *LC* series circuit is governed by the initial value problem

(12) $I''(t) + 4I(t) = g(t); \quad I(0) = 0, \quad I'(0) = 0,$

where

$$g(t) \coloneqq \begin{cases} 1, & 0 < t < 1, \\ -1, & 1 < t < 2, \\ 0, & 2 < t. \end{cases}$$

Determine the current as a function of time t.

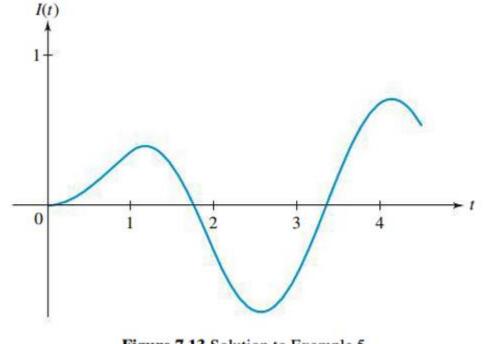


Figure 7.13 Solution to Example 5